1.8 Weak containment

Definition 1.8.1. Let Γ be a group, and $\pi:\Gamma \to \mathcal{U}(\mathcal{H})$, $\rho:\Gamma \to \mathcal{U}(\mathcal{K})$ two unitary representations. The representation π is **weakly contained** in the representation ρ (written $\pi \prec \rho$) if for each $\xi \in \mathcal{H}$, $F \subset \Gamma$ finite, and $\varepsilon > 0$, there exists $\eta_1, \ldots, \eta_n \in \mathcal{K}$ such that

$$|\langle \pi(\gamma)\xi, \xi \rangle - \sum_{j=1}^{n} \langle \rho(\gamma)\eta_j, \eta_j \rangle| < \varepsilon,$$

for all $\gamma \in F$. The representations π and ρ are weakly equivalent (written $\pi \sim \rho$) if $\pi \prec \rho$ and $\rho \prec \pi$.

It follows easily from the definition that $\pi \sim \pi^{\oplus \infty}$ for any representation π . Also, it is easy to see that containment implies weak containment, and weak containment is a partial order. We also have that if π_i , and ρ_i , $i \in I$ are families of representations such that $\pi_i \prec \rho_i$ for each $i \in I$, then $\bigoplus_{i \in I} \pi_i \prec \bigoplus_{i \in I} \rho_i$.

Exercise 1.8.2. Show that if π_1, π_2, ρ_1 , and ρ_2 are unitary representations of a group Γ such that $\pi_i \prec \rho_i$, for $i \in \{1, 2\}$, then $\pi_1 \otimes \pi_2 \prec \rho_1 \otimes \rho_2$.

Example 1.8.3. If a representation $\pi: \Gamma \to \mathcal{U}(\mathcal{H})$ weakly contains the trivial representation then for any finite symmetric set $S \subset \Gamma$ and $\varepsilon > 0$ there exists $\eta_1, \ldots, \eta_n \in \mathcal{H}$ such that

$$|1 - \sum_{j=1}^{n} \langle \pi(\gamma) \eta_j, \eta_j \rangle| < \varepsilon,$$

for all $\gamma \in S \cup \{e\}$. Hence, if we denote by $\eta = \bigoplus_{j=1}^n \eta_j \in \mathcal{H}^{\oplus n} \subset \mathcal{H}^{\oplus \infty}$, then we have $|1 - ||\eta||^2| < \varepsilon$, and hence for each $\gamma \in S$ we have

$$\|\eta - \pi^{\oplus \infty}(\gamma)\eta\|^2 = 2(\|\eta\|^2 - \Re(\langle \pi^{\oplus \infty}(\gamma)\eta, \eta \rangle)) < 4\varepsilon.$$

It follows that π contains almost invariant vectors by Lemma 1.5.4.

Conversely, if π contains almost invariant vectors, then it is easy to see that π weakly contains the trivial representation.

The following lemma from [Fel63] is a useful tool for checking if one representation is weakly contained in another.

Lemma 1.8.4. Let $\pi: \Gamma \to \mathcal{U}(\mathcal{H})$ and $\rho: \Gamma \to \mathcal{U}(\mathcal{K})$ be two unitary representations of a group Γ . Let $\mathcal{L} \subset \mathcal{H}$ be a set such that $\overline{\operatorname{sp}}\pi(\Gamma)\mathcal{L} = \mathcal{H}$. Then $\pi \prec \rho$ if and only if for each $\xi \in \mathcal{L}$, $F \subset \Gamma$ finite, and $\varepsilon > 0$, there exists $\eta_1, \ldots, \eta_n \in \mathcal{K}$ such that

$$|\langle \pi(\gamma)\xi, \xi \rangle - \sum_{j=1}^{n} \langle \rho(\gamma)\eta_j, \eta_j \rangle| < \varepsilon,$$

for all $\gamma \in F$.

Proof. Suppose $\mathcal{L} \subset \mathcal{H}$ is as above, and consider $\mathcal{X} \subset \mathcal{H}$ the set of vectors $\xi \in \mathcal{H}$ such that the positive definite function $\gamma \mapsto \langle \pi(\gamma)\xi, \xi \rangle$ can be approximated arbitrarily well on finite sets by sums of positive definite functions associated to ρ . By hypothesis $\mathcal{L} \subset \mathcal{X}$, and we need to show that $\mathcal{X} = \mathcal{H}$.

If $\xi \in \mathcal{X}$, $\eta \in \mathcal{K}^{\oplus \infty}$, and $\Sigma_{x \in \Gamma} \alpha_x u_x \in \mathbb{C}\Gamma$, then from the formula

$$|\langle \pi(\gamma)(\Sigma_{x\in\Gamma}\alpha_x\pi(x)\xi), \Sigma_{x\in\Gamma}\alpha_x\pi(x)\xi\rangle - \langle \rho(\gamma)(\Sigma_{x\in\Gamma}\alpha_x\pi(x)\eta), \Sigma_{x\in\Gamma}\alpha_x\pi(x)\eta\rangle|$$

$$\leq \Sigma_{x,y\in\Gamma} |\alpha_y \alpha_x| |\langle \pi(y^{-1}\gamma x)\xi, \xi\rangle - \langle \rho(y^{-1}\gamma x)\eta, \eta\rangle|,$$

we see that $\Sigma_{x\in\Gamma}\alpha_x\pi(x)\xi\in\mathcal{X}$. In particular, \mathcal{X} is Γ -invariant.

It is also easy to see that \mathcal{X} is a closed set. Moreover, if $\xi, \xi' \in \mathcal{X}$ are such that $\overline{\mathrm{sp}}(\pi(\Gamma)\xi) \perp \overline{\mathrm{sp}}(\pi(\Gamma)\xi')$, then it is easy to see that $\xi + \xi' \in \mathcal{X}$.

In general, we then have that if $\xi, \xi' \in \mathcal{X}$ then

$$\xi + \xi' = (\xi + \operatorname{Proj}_{\overline{\operatorname{sp}}(\pi(\Gamma)\xi)}(\xi')) + (\xi' - \operatorname{Proj}_{\overline{\operatorname{sp}}(\pi(\Gamma)\xi)}(\xi')) \in \mathcal{X}.$$

We therefore have shown that \mathcal{X} is a closed Γ -invariant subspace which contains \mathcal{L} and hence $\mathcal{X} = \mathcal{H}$.

If $\varphi : \Gamma \to \mathbb{C}$ is a function of positive type and $\pi_{\varphi} : \Gamma \to \mathcal{U}(\mathcal{H}_{\varphi})$ is the corresponding representation described in Section 1.2, then π_{φ} is generated by a single vector. We therefore obtain the following corollary.

Corollary 1.8.5. If $\rho: \Gamma \to \mathcal{U}(\mathcal{K})$ is a representation of a group Γ , $\varphi: \Gamma \to \mathbb{C}$ is a function of positive type, and $\pi_{\varphi}: \Gamma \to \mathcal{U}(\mathcal{H}_{\varphi})$ is the corresponding representation. Then $\pi_{\varphi} \prec \rho$ if and only if $F \subset \Gamma$ finite, and $\varepsilon > 0$, there exists $\eta_1, \ldots, \eta_n \in \mathcal{K}$ such that

$$|\phi(\gamma) - \sum_{j=1}^{n} \langle \rho(\gamma) \eta_j, \eta_j \rangle| < \varepsilon,$$

for all $\gamma \in F$.

Exercise 1.8.6. Suppose $\Gamma \curvearrowright X$ is an action of a group Γ on a set X, and $\alpha : \Gamma \times X \to \Lambda$ is a cocycle into a group Λ . If $\pi : \Lambda \to \mathcal{U}(\mathcal{H})$, and $\rho : \Lambda \to \mathcal{U}(\mathcal{K})$ are two representations such that $\pi \prec \rho$, then show that $\operatorname{Ind}_{\Lambda}^{\alpha} \pi \prec \operatorname{Ind}_{\Lambda}^{\alpha} \rho$.

Conclude that if $\Sigma < \Gamma$ is an amenable subgroup of a group Γ then $\lambda_{\Gamma/\Sigma} \prec \lambda_{\Gamma}$.

For further properties of weak containment a good place to look is Appendix F in [BdlHV08].

Definition 1.8.7. [Bek90] Let $\pi: \Gamma \to \mathcal{U}(\mathcal{H})$ be a unitary representation of a group Γ , then π is **amenable** if there exists a tate $\Phi \in (\mathcal{B}(\mathcal{H}))^*$ such that $\Phi(\pi(\gamma)T) = \Phi(T\pi(\gamma))$ for all $\gamma \in \Gamma$, $T \in \mathcal{B}(\mathcal{H})$.

Note that Γ is amenable if and only if the left-regular representation is amenable. We also have an analogue of Theorem 1.6.5 for amenable representations. The proof is similar, however we will not present it here.

Theorem 1.8.8. [Bek90] Let $\pi : \Gamma \to \mathcal{U}(\mathcal{H})$ be a unitary representation of a group Γ , then the following conditions are equivalent.

(1). π is amenable.

- (2). There exists a net of trace class operators $T_i \in \mathcal{B}(\mathcal{H})$ such that $||T_i||_{Tr} = 1$, and $||T_i\pi(\gamma) \pi(\gamma)T_i||_{Tr} \to 0$, for all $\gamma \in \Gamma$.
- (3). There exists a net of finite rank projections $P_i \in \mathcal{B}(\mathcal{H})$ such that $\frac{1}{\|P_i\|_{\mathrm{HS}}} \|P_i\pi(\gamma) \pi(\gamma)P_i\|_{\mathrm{HS}} \to 0$, for all $\gamma \in \Gamma$.
 - (4). $\pi \otimes \overline{\pi}$ contains almost invariant vectors.
- (5). For any finite symmetric set $S \subset \Gamma$ the operator $T_S = \frac{1}{|S|} \sum_{\gamma \in S} \pi \otimes \overline{\pi}(\gamma)$ satisfies $||T_S|| = 1$.

Bibliography

- [BdlHV08] B. Bekka, P. de la Harpe, and A. Valette, *Kazhdan's property (T).* new math. monographs, no. 11, CUP, 2008.
- [Bek90] B. Bekka, Amenable unitary representations of locally compact groups, Invent. Math. 100 (1990), no. 2, 383–401.
- [Fel63] J. M. G. Fell, Weak containment and Kronecker products of group representations, Pacific J. Math. 13 (1963), 503–510.

jesse.d.peterson@vanderbilt.edu